Insights into Zn2+ homeostasis in neurons from experimental and modeling studies.
نویسندگان
چکیده
To understand the mechanisms of neuronal Zn2+ homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein, (65)Zn2+ uptake and release, and intracellular free Zn2+ levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+ transients and total Zn2+ content observed under these conditions. Only a model that incorporated a muffler with high affinity for Zn2+, trafficking Zn2+ to intracellular storage sites, was able to reproduce the experimental results, both qualitatively and quantitatively. This "muffler model" estimated the resting intracellular free Zn2+ concentration to be 1.07 nM. If metallothionein were to function as the exclusive cytosolic Zn2+ muffler, the muffler model predicts that the cellular concentration required to match experimental data is greater than the measured resting concentration of metallothionein. Thus Zn2+ buffering in resting cultured neurons requires additional high-affinity cytosolic metal binding moieties. Added CQ, as low as 1 microM, was shown to selectively increase Zn2+ influx. Simulations reproduced these data by modeling CQ as an ionophore. We conclude that maintenance of neuronal Zn2+ homeostasis, when challenged with Zn2+ loads, relies heavily on the function of a high-affinity muffler, the characteristics of which can be effectively studied with computational models.
منابع مشابه
Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملInsights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies
Objective(s): MicroRNAs (miRNAs) are a subfamily of small noncoding RNAs that play a variety of roles in regulating gene expression in nearly all organisms. They affect different biological pathways by post-transcriptionally regulating mRNAs. Aside from miRNAs’ role in maintaining cellular homeostasis, their perturbation is related to several pathologic states and dis...
متن کاملSecretory state regulates Zn2+ transport in gastric parietal cell of the rabbit.
Secretory compartments of neurons, endocrine cells, and exocrine glands are acidic and contain high levels of labile Zn2+. Previously, we reported evidence that acidity is regulated, in part, by the content of Zn2+ in the secretory [i.e., tubulovesicle (TV)] compartment of the acid-secreting gastric parietal cell. Here we report studies focusing on the mechanisms of Zn2+ transport by the TV com...
متن کاملAlteration in Intracellular Zn2+ Homeostasis as a Result of TRPM2 Channel Activation Contributes to ROS-Induced Hippocampal Neuronal Death
Transient receptor potential melastatin-related 2 (TRPM2) channel, a molecular sensor for reactive oxygen species (ROS), plays an important role in cognitive dysfunction associated with post-ischemia brain damage thought to result from ROS-induced TRPM2-dependent neuronal death during reperfusion. Emerging evidence further suggests that an alteration in the Zn2+ homeostasis is critical in ROS-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 3 شماره
صفحات -
تاریخ انتشار 2008